

Project Overview

Develop the centerpiece technology for an integrated biorefinery concept based on the **conversion of renewable and waste sources of C1 intermediates** (e.g., syngas, CO₂, methanol) to produce sustainable aviation fuel (SAF) with **improved carbon efficiency and reduced capital and operating expenses** compared to

traditional gas-to-liquids processes.

Project Overview – Fuel Market Trends

Project Outcome

Develop catalysts and processes that enable the **direct conversion of CO₂-rich syngas** (15-20% CO₂ in syngas) to hydrocarbons (STH) in a single reactor **and** the subsequent **conversion of this hydrocarbon stream to SAF with >70% reduction in GHG emissions** versus petroleum jet fuel.

Key Differentiators

Address known drawbacks for traditional syngas-to-fuels processes at smaller production scales – high capital cost, limited product quality – by focusing on process intensification, high carbon efficiency, high-quality ("on-spec") fuel products

Overview - Traditional Syngas-to-Fuels Processes

Traditional syngas to hydrocarbon fuels have known drawbacks

- Fischer-Tropsch (FT): Costly catalytic upgrading to produce quality fuels
- Syngas-to-Olefins (non-bio "STO"): Lower TRL, designed for polymer precursors
- Methanol-to-Gasoline (MTG): Capital intensive, high aromatics content, not SAF
- Mobil Olefins-to-Gasoline-and-Distillate (MOGD): Capital intensive, high number of process steps to SAF

Advanced upgrading technologies can reduce SAF cost and GHG emissions through reduced process complexity, reduced separations duty, higher quality fuel products

Overview – An Alternative Pathway: HOG

NREL developed the High-Octane Gasoline (HOG) Pathway through biomassderived methanol/dimethyl ether (DME)

Key Differentiators of HOG versus MTG

- HOG pathway yields branched alkanes, not aromatics
- Higher octane (102 vs 87), higher value fuel product
 - Alkylate versus regular-grade gasoline
- Lower severity conditions for HOG vs MTG
 - Higher yield (18% relative), higher C-efficiency
- Modeled costs for MeOH-to-HOG of \$0.40/GGE in FY21 compare favorably against other alcohol conv tech.
 - EtOH-to-Jet \$0.89–1.19/GGE (L. Tao et al., Green Chem. 2017, 19, 1082)
- HOG pathway also provides a high carbon-efficiency route to a SAF product

Peer-reviewed publications: ACS Catal. 2015; Biofpr 2016; ACS Catal. 2017; Nat. Catal. 2019; Appl. Energy 2019; Appl. Catal. B Environ. 2021; Appl. Catal. B Environ. 2022; Biofpr 2022; Appl. Catal. A 2022.

Overview – An Alternative Pathway: STH (FY20)

Process intensification enables a direct Syngas-to-Hydrocarbons (STH) pathway

Stacked bed "CZA+A | Cu/BEA"

 CO_2 -rich syngas 1 $CO + 0.8 CO_2 + 2 H_2$

Syngas

US Patent Appl. 63/065,648, Aug 14, 2020; ACS Catalysis 2022, 12, 9270; J. CO₂ Utilization 2022, 66, 102261.

Hydrocarbons

- Product selectivity similar to DME-to-HOG

- Stacked-bed outperformed mixed-bed
- NREL's Cu/BEA outperformed commercial BEA
- Co-conversion of CO₂ with syngas

Differentiators versus STO

- Catalysts
 - CuZnO/Al₂O₃ vs ZnCrO_x
 - BEA vs AEL zeolite
- Intermediate
 - MeOH vs Ketene
- Product composition
 - Alkylate vs Light Olefins

1. Approach: Dual R&D Cycles

- Hypothesis-driven catalyst and process development coupled with:
 - Sophisticated catalyst characterization (with Adv. Cat. Synthesis. & Characterization)
 - Reactor design for cascade chemistry (with Cons. Comp. Physics & Chemistry)
- TEA-informed research targets, experimental data informs process models and TEA

1. Approach: Management and DEI

Task management integrated with CCB enabling capabilities, CCB DEI team, BETO analysis and consortia, and technology advancement opportunities

Project-specific DEI milestones to be determined in FY24 and FY25 with ChemCatBio DEI Lead Team

1. Approach: Pathways Explored in this Project

Pathway Objectives

Direct CO₂-rich STH with NREL's Cu/BEA catalyst

- Catalyst and process development for improved carbon efficiency and GHG emissions reductions informed by process models and TEA/LCA
- Establish multi-component catalyst lifetime and regeneration
- Translate performance from powdered catalysts to engineered catalysts

Isoalkane Dehydrocoupling (DHC)

- Catalyst and process development to establish the state-of-the-art for this new process intensification approach to SAF
- Compare to benchmark 2-step process dehydrogenation + olefin oligomerization

1. Approach: Opportunities and Challenges

Similar process conditions offer the opportunity for process intensification in a single reactor

- Utilize commercial, inexpensive Cu-based MeOH synthesis catalyst "CZA" and NREL's Cu/BEA
- Co-convert CO₂ with CO during STH
- Go/No-Go Decision in FY21 outlined a clear path for STH to approach \$2.50/GGE with >30% C-efficiency
 - 5% reduction in both CapEx and OpEx

Research Challenges/Risks and Critical Success Factors for STH and DHC

- **Decrease CO₂ selectivity** in STH to increase C-efficiency
- Regenerate multi-component catalyst mixtures
- Operate for extended times-on-stream with biomass-derived syngas feed compositions
- Maximize yield and carbon efficiency with multi-functional catalyst systems
- Advance technology with bioenergy industry partners, TCF funding

2. Progress & Outcomes: Baseline in FY21

	MOGD Benchmark	"3-step" DME-to-HOG	Direct STH	Isoalkane Dehydrocoupling
Catalyst	ZSM-5	Cu/BEA	CZA Cu/BEA	_
Severity of Process Conditions	350–400 °C 20 atm Frequent regen.	230 °C, 3.5 atm Stable >100h, Multiple regens demonstrated	220 °C, 7-20 atm Stable >50 h No regen protocol established	New Effort in FY22
FY21 Metrics	-	44% DME conv. 0.094 g/g _{cat} /h	>50% CO conv. 0.08 g/g _{Cu/BEA} /h	New Effort in FY22
C-Efficiency and MFSP	approx. 30% \$4.23/GGE	26.2% \$3.38/GGE	18.8% \$4.72/GGE	_

FY21 data set the stage for catalyst and process development

- TEA-directed research goals to increase C-efficiency and reduce cost
- Compare Direct STH against 3-step DME-to-HOG and benchmark MOGD process

2. Progress & Outcomes: Increased C-efficiency in STH

Conceptual process models correlated decreasing CO₂ product selectivity through CO₂ recycle with increasing C-efficiency

• Goal: Determine the effect of CO₂/CO simulated recycle ratio on CO₂ and C₄₊ product selectivity, carbon efficiency in STH

1

- Systematic study across a range of CO₂/CO ratios indicated recycle decreases overall CO₂ selectivity and molar production rate
- **No change** to typical HC product selectivity
- At 250 °C, 20 atm, CO₂ selectivity further reduced to 25% giving a modeled C-efficiency to C₄₊ HCs of 32.2%

50

45

40

35

30

25

20

15

10

0.22

0

0.44

0.65

CO₂/CO Ratio (mol/mol)

0.83

CO₂ Selectivity (%)

2. Progress & Outcomes: STH Catalyst Regeneration

- Goal: Compare deposited carbon species on Cu/BEA from syngas versus DME feeds, develop Cu/BEA regeneration protocol compatible with CZA temperature limit (ca. 300 °C)
 - with Advanced Catalyst Synthesis and Characterization Project

- More multi-ring aromatics observed with syngas feed compared to DME feed
- Developed a 250 °C oxidative regeneration protocol that enabled full recovery of the multi-component catalyst after 50 h TOS across a range of space velocities

2. Progress & Outcomes: STH Extended TOS

- Goal: Operate the STH reaction for at least 200 h time-on-stream with analysisinformed syngas compositions representing process gas recycle
 - with Thermochemical Platform Analysis Project

No significant deactivation observed, no regeneration needed over 200 h

2. Progress & Outcomes: Engineered Cu/BEA Catalyst

 Goal: Identify the initial structure-property-performance relationships that reduce the risk to transition from powder to engineered forms of Cu/BEA

Initial extrudate prepared in 2017 for pilot operation

Initial promising results with "Cufirst" material set the baseline for this effort through FY25

Seeking to understand **how and when addition of Cu affects speciation** and resulting catalytic performance (with ACSC, CDM)

250 °C, 20 atm H ₂ :CO:CO ₂ = 2.6 : 1 : 0.9	CO Conv. (%)	CO ₂ Sel. (%)	C ₄₊ Sel. (%)	DME Sel. (%)
Powder Cu/BEA	68	18	70	8.4
Cu/ex-BEA-2 "Cu-first"	70	17	61	17

2. Progress & Outcomes: Isoalkane Dehydrocoupling

 Goal (FY22): Establish proof-of-concept for a process intensification approach to isoalkane dehydrocoupling using a mixed-bed of catalysts

ACS Catal. **2017**, 7, 3662 Appl. Catal. B **2022**, 301, 120801 J. Catal. **2022**, 413, 264

- Tested 7 catalyst combinations inspired by literature and patents
- Commercial Pt-Sn/Al₂O₃ with an acid coupling catalyst (2:1 mass ratio) provided proof-of-concept data to build upon in FY23-25
- R&D focus on reducing hydrocarbon cracking chemistry at higher temperatures and favor C₈₊ products for SAF

2. Progress & Outcomes: Summary through FY23-Q1

	MOGD Benchmark	"3-step" DME-to-HOG	Direct STH	Isoalkane Dehydrocoupling
Catalyst	ZSM-5	Cu/BEA	CZA Cu/BEA	Pt-Sn/Al ₂ O ₃ +SiAlO _x
Severity of Process Conditions	350–400 °C 20 atm Frequent regen.	230 °C, 3.5 atm Stable >100h, Multiple regens demonstrated	250 °C, 20 atm Stable >200 h Regen protocol established	300-400 °C 1-7 atm Proof-of-concept established
FY23-Q1 Metrics	-	44% DME conv. 0.094 g/g _{cat} /h	62% CO conv. 0.125 g/g _{Cu/BEA} /h	Baseline to be set at FY24 G/NG
C-Efficiency and MFSP	approx. 30% \$4.23/GGE	26.2% \$3.38/GGE	32.2% \$2.61/GGE for C ₄₊ hydrocarbons	To be determined in FY24-25

- Direct STH offers advantages in activity, C-efficiency, cost compared to
 3-step DME-to-HOG and MOGD
- Isoalkane dehydrocoupling to be assessed in FY24 Go/No-Go Decision

2. Progress & Outcomes: Future R&D

- FY23-Q4: Determine the impact of engineered catalyst formulation on Cu speciation and catalyst deactivation mechanisms (with Enabling Capabilities)
 - Correlate **Cu speciation** with differences in STH catalytic performance and deactivation profile
 - Reduces the risk associated with assumptions for engineered catalyst performance
- FY24-Q4: Establish coke characteristics for at least two catalyst systems from different ChemCatBio catalytic technologies
 - **Multi-project effort** to experimentally and computationally understand the deactivation and regeneration of engineered catalysts
- FY24 Go/No-go: Feasibility of one-step dehydrogenative coupling versus two-step alkane dehydrogenation and coupling
 - Metric for comparison: at least a 10% relative cost reduction in the CapEx and OpEx for the 1step process compared to the 2-step process.
- End of Project Goal (FY25): Integrate process steps to generate SAF from syngas
 - Use **real biomass syngas** to generate 150 mL SAF for Tier α and β testing

3. Impact: High-Octane Gasoline (HOG) Product

HOG product targets growing premium gasoline fuel demand and value

- Unlike ethanol, gasoline product has no blend limit

HOG technology awarded a *Technology Commercialization Fund*\$740k investment by DOE + \$750k cost-share from Enerkem in 2018-2019

- HOG production at the **pilot scale** (20-kg_{cat}) with **MSW-derived methanol for**

500 h time-on-stream

- Produced 20 L of high-octane gasoline

- Sent to refinery industry partners

Composition 73.9% Triptane (2,2,3-trimethylbutane) RON = 108 MON = 97

- This TCF project was critical to generate liquid product for industry analysis
- Research license to commercialize NREL's HOG technology with large energy company executed Phase 1 in 2020, Phase 2 in 2022

3. Impact: SAF Product

Developed a mild-condition route for olefin coupling to jet-range hydrocarbons

Product meets 5 key ASTM Int'l jet fuel property specifications

Fuel Property	ASTM D1655	Coupled Olefins
Density (kg/m³)	775–840	783
Freeze point (°C)	-40 max	- 81
Viscosity (mm ² /s)	8.0 max	7.6
Net Heat of Combustion (MJ/kg)	42.8 min	43.8
T10 (°C)	205 max	178
T50	Report	188
T90	Report	239
FBP	300 max	281

- Process model and TEA indicated only a minor fuel synthesis cost increase to generate this additional SAF product from HOG Pathway
- Sets baseline comparison for Isoalkane DHC approach

Ruddy et al., Nature Catalysis **2019**, 2, 638.

Project Goal

Develop new catalytic upgrading technologies for renewable C1 building blocks to **SAF with lower CapEx and OpEx, higher C-efficiency** than traditional approaches.

Approach

- Process intensification with multi-functional catalysts to perform selective cascade reactions, leading to low operating costs, high C-yields, and high C-efficiency
- Interdisciplinary, collaborative approach within ChemCatBio leveraging enabling technologies, process models, techno-economic and life-cycle analyses

Impact

- Demonstrated technology transfer with the bioenergy industry (e.g., TCF with Enerkem, research license) to reduce risk of commercialization
- Patented intellectual property, and published results in top-tier peer-reviewed journals

Research Progress & Outcomes

- CO₂ recycle enables C-efficiency of 32% and C₄₊ cost of \$2.61/GGE for STH
- Regeneration protocol established, STH catalyst operates >200 h without regeneration
- Initial results with engineered catalysts highlight importance for continued R&D
- Proof-of-concept established for isoalkane DHC

Quad Chart Overview

Timeline

- 10/01/2022
- 09/30/2025

	FY22 Costed	Total Award
DOE Funding	\$1600k	\$1600k for FY23 \$4800k for FY23-25

TRL at Project Start: 2 TRL at Project End: 4

Project Goal

Develop new catalytic upgrading technologies for renewable C1 building blocks to SAF with lower CapEx and OpEx, higher C-efficiency than traditional approaches

End of Project Milestone

Integrate process steps to generate SAF from syngas: Generate at least 150 mL of finished SAF from syngas via STH and dehydrogenative coupling reactions using engineered catalysts developed in this project and perform Tier a and b fuel property analysis.

Funding Mechanism

AOP LabCall 2023 - ChemCatBio

Project Partners*

Prof. Aditya Bhan, Univ. of Minnesota (\$100k)

Task Leaders in this Project

Anh To STH Lead

Susan Habas Isoalkane DHC Lead

Frederick Baddour Engineered Catalyst Lead

NREL Catalyst and Process Development

Claire Nimlos Daniel Dupuis

Ryan Ness Carrie Farberow

Nicole LiBretto Qiyuan Wu

Nico Dwarica Alexander Hill

NREL Analysis Collaborators

Abhijit Dutta Eric Tan

ChemCatBio Collaborators

Kinga Unocic Ted Krause

Bruce Adkins Canan Karakaya

Peter Ciesielski

Academic Collaborators

Aditya Bhan (Minnesota)

Jeffrey Miller (Purdue)

Richard Brutchey, Noah Malmstadt (USC)

This research was supported by the DOE Bioenergy Technology Office under Contract no. DE-AC36-08-G028308 with the National Renewable Energy Laboratory

This work was performed in collaboration with the Chemical Catalysis for Bioenergy Consortium (ChemCatBio, CCB), a member of the Energy Materials Network (EMN)

Q&A: 10 minutes

chemcatbio.org

Responses to Previous Reviewers' Comments

- Comment: A critical result was the C13 results proving that CO2 activation occurred over CZA:Cu/BEA... One of the challenges in the work is working at such low conversions and not providing a clear reaction pathway insight.
 - Response: Work through FY23 focused on higher conversion to increase per-pass yield
- Comment: Cu/Zn is a good shift catalyst. Does that present a limit ?
 - Responses: We are working with the CCPC to computationally identify how the series of reactions work together and to gain insight into the pathway.
 - The reviewer is correct to note that WGS is critical in this system. We're exploring the limit of this both experimentally with CO2 co-feeds at varying CO:CO2 ratios and computationally with a reactor model that can identify limitations related to each catalyst's performance
- Comment: It could be beneficial if the team could collaborate with CCPC and other enabling groups to investigate the confinement effect for their Cu/BEA catalysts and the nanoscale effect of their nanoparticle catalysts
 - Response: Confinement effects in BEA zeolite that affect this chemistry have been explored and reported in a series of papers by Iglesia. This knowledge enables us to investigate reactor-scale effects for the system with the CCPC.
 - There is on-going work with the CCPC to identify new carbide compositions that we will seek to build upon with the nanomaterials.

ChemCatBio

Highlights from FY21 Go/No-Go

- Go/No-Go Description: Evaluate the STH process model for FY21 and future SOT reports.
- <u>Go/No-Go Criteria</u>: Using TEA models and experimental data, the direct STH process model will be chosen for SOT updates based on the modeled MFSP determined in FY21-Q3.
- Outcome: We demonstrated a modeled baseline MFSP value for the direct STH pathway of \$4.72/GGE, and have **identified sensitivity cases that outline a clear path forward** to achieve continued cost reductions approaching the BETO goal of \$2.50/GGE with associated C-efficiency improvements. Our recommendation is to proceed with the tasks as they are laid in the FY22 AOP that address the critical path forward.

Case 2.5 identifies low CO₂ selectivity and high C₄₊ selectivity as the target case for R&D to meet high yields and low costs

Publications, Patents, Presentations, Awards, and Commercialization

Publications since Peer Review in 2021

- 1. "Spectroscopic insight into carbon speciation and removal on a Cu/BEA catalyst during renewable high-octane hydrocarbon synthesis" *Applied Catalysis B: Environmental*, **2021**, 287, 119925.
- 2. "Throughput Optimization of Molybdenum Carbide Nanoparticle Catalysts in a Continuous Flow Reactor Using Design of Experiments" *ACS Applied Nano Materials*, **2022**, *5*, 1966.
- 3. "Catalyst design to direct high-octane gasoline fuel properties for improved engine efficiency" *Applied Catalysis B: Environmental*, **2022**, *301*, 120801.
- 4. "Connecting cation site location to alkane dehydrogenation activity in Ni/BEA catalysts" *Journal of Catalysis*, **2022**, *413*, 264.
- 5. "Direct conversion of renewable CO₂-rich syngas to high-octane hydrocarbons in a single reactor" *ACS Catalysis*, **2022**, *12*, 9270.
- 6. "A separations and purification process for improving yields and meeting fuel contaminant specifications for high-octane gasoline produced from dimethyl-ether over a Cu/BEA catalyst" *Biofuels, Bioproducts and Biorefining*, **2022**, *16*, 1469.
- 7. "Benchmarking Cu/BEA and HBEA catalysts for high-octane gasoline synthesis" *Applied Catalysis A: General*, **2022**, *643*, 118799.
- 8. "Activating Molybdenum Carbide Nanoparticle Catalysts under Mild Conditions Using Thermally Labile Ligands" *Chemistry of Materials*, **2022**, *34*, 8849.
- 9. "Revealing the Reaction Behavior of Co_{0.86}Mn_{0.14}O under H₂ using in situ Closed-Cell Gas Reaction S/TEM" *Microscopy and Microanalysis*, **2022**, 28, 1884.
- 10. "Direct synthesis of branched hydrocarbons from CO₂ over composite catalysts in a single reactor" *Journal of CO2 Utilization*, **2022**, *66*, 102261.
- Patents since Peer Review in 2021 (9 total since 2017)
 - "Methods, systems, and catalysts for the direct conversion of syngas to high-octane hydrocarbons" US Patent Application 17/401,778, August 13, 2021

Publications, Patents, Presentations, Awards, and Commercialization

Presentations since Peer Review in 2021

- 1. "Developing new processes for the conversion of methanol to advantaged biofuels within a market-responsive biorefinery concept enabled by catalysis" presented virtually at Pacifichem Conference, Dec 19, 2021.
- 2. "Process intensification for direct conversion of biomass-based syngas to high octane gasoline" presented virtually at 2021 AIChE Annual Meeting, Nov. 16, 2021.
- 3. "Developing new processes for the conversion of methanol to advantaged biofuels within a market-responsive biorefinery concept enabled by catalysis" Presented at the ACS National Meeting, San Diego, CA. March 20, 2022.
- 4. "Catalyst design to direct high-octane gasoline fuel properties for improved engine efficiency" Presented at the ACS National Meeting, San Diego, CA. March 22, 2022.
- 5. "Direct synthesis of branched hydrocarbons from CO2 hydrogenation over composite catalysts in a single reactor" Presented at the 27th North American Catalysis Society Meeting, New York, NY. May 22-27, 2022
- 6. "New processes for the conversion of renewable methanol to advantaged biofuels within a market-responsive biorefinery concept enabled by catalysis" Presented at the Green Chemistry and Engineering Conference, Reston, VA. June 8, 2022.
- 7. "Roles of Cu in coke oxidation during regeneration of spent Cu/BEA catalyst from renewable high octane hydrocarbon synthesis" Presented at the 96th ACS Colloid & Surface Science Symposium, Golden, CO. July 11-13, 2022
- 8. "Using Chemistry and Engineering to Accelerate Technology Development for Sustainable Transportation Fuels" invited seminar at Lafayette College, Easton, PA, Nov 18, 2022.
- 9. "Direct Conversion of Renewable CO2-Rich Syngas to High-Octane Hydrocarbons in a Single Reactor" 2022 American Institute of Chemical Engineers Annual Meeting, Phoenix, AZ, Nov 17, 2022.

· Commercialization update

 Phase 2 R&D project initiated in 2022 to assess high-octane gasoline technology for commercialization at the small pilot scale (200-250 g_{cat})